Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(9): e30186, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694113

ABSTRACT

We investigated the prevalence and species diversity of dsRNA mycoviruses in Beauveria bassiana isolates from the China's Guniujiang Nature Preserve. Among the 28 isolates analyzed, electropherotyping revealed viral infections in 28.6 % (8 out of 28) of the isolates. Metatranscriptomic identification and RT-PCR confirmed the presence of six putative virus species, including two novel species: Beauveria bassiana victorivirus 2 (BbV-2) and Beauveria bassiana bipartite mycovirus 2 (BbBV-2). Four previously characterized mycoviruses were also identified: Beauveria bassiana polymycovirus 4 (BbPmV4), Beauveria bassiana partitivirus 1 (BbPV-1), Beauveria bassiana bipartite mycovirus 1 (BbBV-1), and Beauveria bassiana chrysovirus 2 (BbCV-2). BbPmV4 was found to be the prevailing mycovirus among the infected isolates, and three isolates showed co-infection with both BbPmV4 and BbBV-2. This study enhances our understanding of fungal viral taxonomy and diversity, providing insights into mycovirus infections in B. bassiana populations in China's Guniujiang Nature Preserve. Furthermore, the study on the diversity of B. bassiana viruses lays the foundation for recognizing fungal viruses as potential enhancers of biocontrol agents.

2.
Arch Virol ; 169(3): 48, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365997

ABSTRACT

Penicillium oxalicum, an important biocontrol fungus in China, has been a subject of extensive study due to its role in combating various pathogenic fungi. Despite the prevalence of mycoviruses with double-stranded (ds) RNA genomes in filamentous fungi, there has been no screening of mycoviruses in P. oxalicum. In this report, we describe the identification and characterization of a novel dsRNA virus isolated from P. oxalicum, designated as "Penicillium oxalicum partitivirus 1" (PoPV1). The genome of PoPV1 consists of two dsRNA segments, dsRNA1 (1,770 bp) and dsRNA2 (1,584 bp), each containing a single open reading frame (ORF): ORF1 and ORF2. Comparative analysis revealed that the RdRp and CP amino acid sequences of PoPV1 share the highest identity (89.18% and 73.97%, respectively) with those of Penicillium aurantiogriseum partitivirus 1 (PaPV1). Motif analysis based on RdRp amino acid sequences places PoPV1 in the genus Gammapartitivirus within the family Partitiviridae, with a distinctive motif VI (R/KV/ILGDD). Phylogenetic analysis further established a close relationship of PoPV1 to PaPV1, forming a unique clade among the gammapartitiviruses. Consequently, we propose that Penicillium oxalicum partitivirus 1 represents a new species in the genus Gammapartitivirus. This is the first report of a dsRNA virus in P. oxalicum.


Subject(s)
Fungal Viruses , Penicillium , RNA Viruses , RNA, Viral/genetics , Phylogeny , Genome, Viral , RNA-Dependent RNA Polymerase/genetics , RNA, Double-Stranded/genetics , Open Reading Frames
3.
Arch Microbiol ; 206(3): 114, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383867

ABSTRACT

An airborne microflora isolate, Aspergillus ochraceopetaliformis RCEF7483, was found to harbor seven dsRNA elements, indicating co-infection with a novel chrysovirus and a known partitivirus. Sequence analysis and RT-PCR confirmed dsRNA5-7 as components of Aspergillus ochraceous virus (AOV), a member of the Partitiviridae family. In light of its distinct host, we have designated it Aspergillus ochraceopetaliformis partitivirus 1 (AoPV1). The dsRNA segments, named dsRNA1-4, with lengths of 3706 bp, 3410 bp, 3190 bp, and 3158 bp, respectively, constitute the genome of a novel chrysovirus designated Aspergillus ochraceopetaliformis chrysovirus 1 (AoCV1). The dsRNA1-4 segments contain five open-reading frames (ORF1-5). Specifically, ORF1 encodes a putative RNA-dependent RNA polymerase (RdRp) with a length of 1112 amino acids, and ORF2 encodes a putative coat protein (CP) spanning 976 amino acids. Additionally, ORF3-5 encode hypothetical proteins (HP1, HP2, and HP3) with lengths of 108, 843, and 914 amino acids, respectively. Comparative analysis revealed the highest similarity of dsRNA1-4 with corresponding proteins in Aspergillus terreus chrysovirus 1 (AtCV1) (RdRp, 66.58%; CP, 51.02%; HP2, 61.80%; and HP3, 41.30%). Due to falling below the threshold for a new species in the Chrysoviridae, we propose that dsRNA1-4 in A. ochraceopetaliformis strain RCEF7483 constitute the novel chrysovirus AoCV1. Moreover, phylogenetic analysis using RdRp amino acid sequences placed AoCV1 within the Alphachrysovirus genus of the Chrysoviridae family, clustering with AtCV1 and other alphachrysoviruses. Our study contributes to the understanding of mycoviruses in A. ochraceopetaliformis and expands our knowledge of the diversity and evolution of chrysoviruses in fungal hosts.


Subject(s)
Coinfection , RNA Viruses , RNA, Viral/genetics , Phylogeny , Coinfection/genetics , RNA Viruses/genetics , Aspergillus/genetics , RNA-Dependent RNA Polymerase/genetics , Amino Acids , Genome, Viral , Open Reading Frames
4.
Front Microbiol ; 14: 1214133, 2023.
Article in English | MEDLINE | ID: mdl-37469432

ABSTRACT

Metarhizium anisopliae is a well-studied entomopathogenic fungus that is widely used in biological control programs. The presence of polymycoviruses in this fungus is common, but their effects on fungal development and stress tolerance are not well understood. In this study, we report the discovery of a novel double-stranded RNA virus, named Metarhizium anisopliae polymycovirus 1 (MaPmV1), which comprises four dsRNAs ranging from 2.4 to 1.4 kbp in length. Phylogenetic analysis revealed that MaPmV1 belongs to the Polymycoviridae family. Biological comparison between MaPmV1-infected (Vi) and -free (Vf) isogenic lines showed that MaPmV1 remarkably enhances the growth rate and conidiation of the host fungus. The upregulation of growth- and conidiation-related genes in Vi strains supports this finding. In addition, MaPmV1 increases the sensitivity of the host to UV-B irradiation, which is evidenced by the downregulation of DNA damage repair genes in Vi strains. However, MaPmV1 does not appear to have any significant impact on the virulence of M. anisopliae. Furthermore, overexpression of individual viral proteins in M. anisopliae did not result in any significant phenotypic alterations, indicating that MaPmV1-mediated changes are not related to a single viral protein. Overall, our findings suggest that mycoviruses can be exploited to enhance fungal development in entomopathogenic fungi, which may lead to improved conidium production on a large scale.

5.
Front Plant Sci ; 14: 1096831, 2023.
Article in English | MEDLINE | ID: mdl-37342142

ABSTRACT

Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot (SSR) on more than 450 plant species, is a notorious fungal pathogen. Nitrate reductase (NR) is required for nitrate assimilation that mediates the reduction of nitrate to nitrite and is the major enzymatic source for NO production in fungi. To explore the possible effects of nitrate reductase SsNR on the development, stress response, and virulence of S. sclerotiorum, RNA interference (RNAi) of SsNR was performed. The results showed that SsNR-silenced mutants showed abnormity in mycelia growth, sclerotia formation, infection cushion formation, reduced virulence on rapeseed and soybean with decreased oxalic acid production. Furthermore SsNR-silenced mutants are more sensitive to abiotic stresses such as Congo Red, SDS, H2O2, and NaCl. Importantly, the expression levels of pathogenicity-related genes SsGgt1, SsSac1, and SsSmk3 are down-regulated in SsNR-silenced mutants, while SsCyp is up-regulated. In summary, phenotypic changes in the gene silenced mutants indicate that SsNR plays important roles in the mycelia growth, sclerotia development, stress response and fungal virulence of S. sclerotiorum.

6.
PLoS Pathog ; 19(5): e1011397, 2023 05.
Article in English | MEDLINE | ID: mdl-37216409

ABSTRACT

Mycoviruses are widely present in all major groups of fungi but those in entomopathogenic Metarhizium spp. remain understudied. In this investigation, a novel double-stranded (ds) RNA virus is isolated from Metarhizium majus and named Metarhizium majus partitivirus 1 (MmPV1). The complete genome sequence of MmPV1 comprises two monocistronic dsRNA segments (dsRNA 1 and dsRNA 2), which encode an RNA-dependent RNA polymerase (RdRp) and a capsid protein (CP), respectively. MmPV1 is classified as a new member of the genus Gammapartitivirus in the family Partitiviridae based on phylogenetic analysis. As compared to an MmPV1-free strain, two isogenic MmPV1-infected single-spore isolates were compromised in terms of conidiation, and tolerance to heat shock and UV-B irradiation, while these phenotypes were accompanied by transcriptional suppression of multiple genes involved in conidiation, heat shock response and DNA damage repair. MmPV1 attenuated fungal virulence since infection resulted in reduced conidiation, hydrophobicity, adhesion, and cuticular penetration. Additionally, secondary metabolites were significantly altered by MmPV1 infection, including reduced production of triterpenoids, and metarhizins A and B, and increased production of nitrogen and phosphorus compounds. However, expression of individual MmPV1 proteins in M. majus had no impact on the host phenotype, suggesting insubstantive links between defective phenotypes and a single viral protein. These findings indicate that MmPV1 infection decreases M. majus fitness to its environment and its insect-pathogenic lifestyle and environment through the orchestration of the host conidiation, stress tolerance, pathogenicity, and secondary metabolism.


Subject(s)
Metarhizium , RNA Viruses , Virulence , Metarhizium/genetics , Secondary Metabolism , Phylogeny , RNA Viruses/genetics , Spores, Fungal/genetics
7.
Arch Virol ; 168(1): 7, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36542124

ABSTRACT

A number of viruses have recently been discovered in all major fungal phyla using high-throughput sequencing. However, basal fungi remain among the least-explored organisms with respect to the presence of mycoviruses. In this study, we characterized two mycoviruses coinfecting the basal fungus Conidiobolus adiaeretus, which we have named "Conidiobolus adiaeretus totivirus 1" (CaTV1) and "Conidiobolus adiaeretus totivirus 2" (CaTV2). Due to their similar sizes, the genomic RNAs of these two viruses comigrated as a single band in 1.5% agarose gel electrophoresis but could be distinguished and characterized by next-generation sequencing and RT-PCR. Like those of other totiviruses, the genomes of both CaTV1 and CaTV2 have two discontinuous open reading frames: ORF1 and ORF2, encoding a putative capsid protein and a putative RNA-dependent RNA polymerase (RdRp), respectively. The RdRps of CaTV1 and CaTV2 have 62.73% and 63.76% amino acid sequence identity, respectively, to Wuhan insect virus 26 and have 62.15% amino acid sequence identity to each other. A maximum-likelihood phylogenetic tree based on RdRp amino acid sequences showed that both CaTV1 and CaTV2 clustered in a clade with members of the genus Totivirus. Therefore, we propose that CaTV1 and CaTV2 are two new members of the genus Totivirus in the family Totiviridae.


Subject(s)
Conidiobolus , Fungal Viruses , Totivirus , Totivirus/genetics , Phylogeny , Conidiobolus/genetics , RNA-Dependent RNA Polymerase/genetics , Open Reading Frames , Genome, Viral , RNA, Viral/genetics , RNA, Double-Stranded , Fungal Viruses/genetics
8.
J Fungi (Basel) ; 8(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36547642

ABSTRACT

Cicada flower, scientifically named Cordyceps chanhua, is an important and well-known Chinese cordycipitoid medicinal mushroom. Although most mycoviruses seem to induce latent infections, some mycoviruses cause host effects. However, the effects of mycovirus on the fungal development and stress tolerance of C. chanhua remain unknown. In this study, we report a novel mycovirus designated Cordyceps chanhua partitivirus 1 (CchPV1) from C. chanhua isolate RCEF5997. The CchPV1 genome comprises dsRNA 1 and dsRNA 2, 1784 and 1563 bp in length, respectively. Phylogenetic analysis using the aa sequences of RdRp revealed that CchPV1 grouped with members of the genus Gammapartitivirus in the family Partitiviridae. We further co-cultivated on PDA donor strain RCEF5997 and recipient C. chanhua strain RCEF5833 (Vf) for 7 days, and we successfully obtained an isogenic line of strain RCEF5833 with CchPV1 (Vi) through single-spore isolation, along with ISSR marker and dsRNA extraction. The biological comparison revealed that CchPV1 infection slows the growth rate of the host, but increases the conidiation and formation of fruiting bodies of the host. Furthermore, the assessment of fungal tolerance demonstrated that CchPV1 weakens the multi-stress tolerance of the host. Thus, CchPV1 infection cause changes in fungal development and multi-stress tolerance of the host C. chanhua. The findings of this study elucidate the effects of gammapartitivirus on host entomogenous fungi and provide a novel strategy for producing high-quality fruiting bodies of C. chanhua.

9.
Arch Virol ; 168(1): 6, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539548

ABSTRACT

In this study, at least four distinct double-stranded RNA viruses, including two partitiviruses, one bipartite virus, and a novel polymycovirus, were detected in the entomopathogenic fungus Metarhizium brunneum strain RCEF0736. We describe the characterization of one of these viruses, a novel polymycovirus, which we have named "Metarhizium brunneum polymycovirus 1" (MbPmV1). The genome of MbPmV1 has four dsRNA segments, ranging from 1153 to 2421 bp in length. dsRNA1, 2, and 3 of MbPmV1 each contain a single large open reading frame (ORF), while dsRNA4 has two ORFs. BLASTp analysis indicated that dsRNA1, 2, 3, and 4 of MbPmV1 have a high degree of similarity to the putative RdRp (59.45%), serine protease (44.22%), putative methyltransferase (48.76%), and proline-alanine-serine-rich protein (PASrp) (52.80%), respectively, of Phaeoacremonium minimum tetramycovirus 1 (PmTmV1). MbPmV1 was grouped in a cluster with members of the genus Polymycovirus and was most closely related to PmTmV1 in the phylogenetic tree. Thus, we propose that MbPmV1 represents a novel species of the genus Polymycovirus, family Polymycoviridae. To our knowledge, this is the first report of a polymycovirus in a member of the genus Metarhizium.


Subject(s)
Fungal Viruses , Metarhizium , RNA Viruses , Viruses , Metarhizium/genetics , Phylogeny , Amino Acid Sequence , Genome, Viral , RNA Viruses/genetics , Viruses/genetics , RNA, Double-Stranded/genetics , Open Reading Frames , RNA, Viral/genetics , Fungal Viruses/genetics
10.
Arch Virol ; 168(1): 4, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539649

ABSTRACT

Cicada flower, Cordyceps chanhua, is a precious edible and medicinal mushroom with uses in both medicine and food in China. In this study, Cordyceps chanhua strain RCEF5995 was found to be coinfected by a previously characterized alternavirus, Cordyceps chanhua alternavirus 1 (CcAV1), and a novel victorivirus, tentatively named "Cordyceps chanhua victorivirus 1" (CcV1). Molecular characterization of CcV1 showed that its complete genome is 5,232 nucleotides long with a GC content of 57.5%. Sequence analysis indicated that CcV1 contains two overlapping open reading frames (ORFs), ORF1 and ORF2, encoding a putative coat protein (CP) of 742 amino acids (aa) and a putative RNA-dependent RNA polymerase (RdRp) of 836 aa, respectively. The termination codon of the CP ORF overlaps with the initiation codon of the RdRp ORF at the tetranucleotide sequence AUGA. Homolog searches, sequence comparisons, and phylogenetic analysis based on deduced amino acid sequences of RdRp indicated that CcV1 is a new member of the genus Victorivirus, family Totiviridae.


Subject(s)
Cordyceps , Totiviridae , Cordyceps/genetics , Phylogeny , RNA, Viral/genetics , RNA, Viral/chemistry , Totiviridae/genetics , RNA-Dependent RNA Polymerase/genetics , Genome, Viral , Open Reading Frames
11.
Arch Microbiol ; 204(10): 606, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36074193

ABSTRACT

There are four dsRNAs segments present in the entomopathogenic fungus Metarhizium brunneum strain RCEF0766. The genomic segments dsRNA1 and dsRNA3 are of a novel virus, "Metarhizium brunneum bipartite mycovirus 1" (MbBV1), while dsRNA2 and dsRNA4 are the components of the Metarhizium brunneum partitivirus 2 (MbPV2), a member in genus Gammapartitivirus of the family Partitiviridae based on molecular analysis and RT-PCR. This suggests that the strain RCEF0766 was co-infected by two different mycoviruses. The complete genome sequence of MbBV1 was elucidated by high-throughput sequencing and RLM-RACE. MbBV1 consists of two dsRNAs (1987 and 1642 bp) encode open-reading frames (ORFs). The ORF1 in dsRNA 1 encode is a putative RNA-dependent RNA polymerase (RdRp) with the molecular weight of 68.08 kDa, while ORF2 in dsRNA 2 encodes a hypothetical protein with the molecular weight of 33.07 kDa. The deduced proteins of ORF1 and ORF2 have the highest identity to those of Erysiphe necator-associated bipartite virus 1 (76.88% and 65.30%). Based on the amino acid sequence of RdRp, MbBV1 is phylogenetically clustered together with the unassigned mycoviruses and represents a distinct lineage. Our study proposes that MbBV1 is a novel mycovirus with bisegmented dsRNA genomes and should be considered a new member of the unassigned group.


Subject(s)
Fungal Viruses , Metarhizium , RNA Viruses , Fungal Viruses/genetics , Genome, Viral , Metarhizium/genetics , Open Reading Frames , Phylogeny , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA-Dependent RNA Polymerase/genetics
12.
Pest Manag Sci ; 78(10): 4018-4027, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35645253

ABSTRACT

BACKGROUND: Rice (Oryza sativa) is an important cereal crop around the world, and has constantly been threaten by the most destructive fungus Magnaporthe oryzae. Pydiflumetofen, a novel succinate dehydrogenase inhibitor (SDHI), is currently being used for controlling various fungal diseases. However, the potential resistance risk of M. oryzae to pydiflumetofen has remained unclear to date, and finding the resistance mechanism is critical for the usage of this fungicide. RESULTS: The M. oryzae strain Guy11 is sensitive to pydiflumetofen, with EC50 value of 1.24 µg mL-1 . 58 pydiflumetofen-resistant (PR) mutants were obtained through pydiflumetofen-induced spontaneous mutation, with a mean EC50 value >500 µg mL -1 , and the resistance factor (RF) >400. The PR mutants displayed positive cross-resistance to carboxin, but were more sensitive to fluopyram. Sequencing analysis showed that all PR mutants presented a cytosine-to-thymine transition at nucleotide position +1218, resulting in a replacement of histidine 245 by tyrosine (H245Y) on MoSdhB. The mutation of MoSdhB exhibited strong resistant phenotype, but no detectable growth deficits in fungal development, including vegetative growth and pathogenicity of M. oryzae. An allele-specific PCR for rapid detection of the H245Y mutants was established in M. oryzae. CONCLUSION: The M. oryzae is sensitive to pydiflumetofen, and shows a medium to high resistance risk to pydiflumetofen. A point mutation of MoSdhB (H245Y) is responsible for the fungal resistance to pydiflumetofen in M. oryzae. © 2022 Society of Chemical Industry.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Magnaporthe/genetics , Oryza/microbiology , Plant Diseases/microbiology , Pyrazoles
13.
Arch Virol ; 167(6): 1467-1470, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35412147

ABSTRACT

In this study, a novel double-stranded (ds) RNA mycovirus, named Cordyceps chanhua alternavirus 1 (CcAV1), was detected in the entomogenous fungus Cordyceps chanhua in China and characterized. The complete genome of CcAV1 is composed of three dsRNA segments: dsRNA 1 (3,512 bp), dsRNA 2 (2,655 bp), and dsRNA 3 (2,415 bp). Each of the three dsRNAs possesses a single open reading frame (ORF). dsRNA 1 encodes a putative RNA-dependent RNA polymerase (RdRp), and dsRNA 2 and dsRNA 3 encode hypothetical protein 1 (HP 1) and hypothetical protein 2 (HP 2), respectively. The predicted amino acid sequences of the putative RdRp, HP 1, and HP 2 had the highest identity of 66.99%, 49.30%, and 56.91%, respectively, to those of Aspergillus foetidus dsRNA mycovirus. A maximum-likelihood phylogenetic tree based on RdRp amino acid sequences showed that CcAV1 clustered with members of the proposed family "Alternaviridae". Hence, we propose that Cordyceps chanhua alternavirus 1 is a novel member of the proposed family "Alternaviridae".


Subject(s)
Cordyceps , Fungal Viruses , RNA Viruses , Cordyceps/genetics , Fungal Viruses/genetics , Genome, Viral , Open Reading Frames , Phylogeny , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase
14.
Arch Virol ; 166(11): 3233-3237, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34535823

ABSTRACT

The entomopathogenic fungus Beauveria bassiana is used worldwide for biological control of insects. Seven dsRNA segments were detected in a single B. bassiana strain, RCEF1446. High-throughput sequencing indicated the presence of three mycoviruses in RCEF1446. Two were identified as the known mycoviruses Beauveria bassiana victorivirus 1 and Beauveria bassiana polymycovirus 1, and the novel mycovirus was designated as "Beauveria bassiana bipartite mycovirus 1" (BbBV1). The complete sequence of the BbBV1 is described here. The mycovirus contains two dsRNA segments. The RNA 1 (dsRNA 4) of BbBV1 is 2,026 bp in length, encoding a RNA-dependent RNA polymerase (RdRp) (68.54 kDa), while the RNA 2 (dsRNA 6) is 1,810 bp in length, encoding a hypothetical protein (35.55 kDa) with unknown function. Moreover, the amino acid sequence of RdRp showed the highest sequence identity of 62.31% to Botryosphaeria dothidea bipartite mycovirus 1. Phylogenetic analysis based on RdRp sequences revealed that BbBV1 represents a distinct lineage of unassigned dsRNA mycoviruses infecting fungi.


Subject(s)
Beauveria/virology , Double Stranded RNA Viruses/genetics , Fungal Viruses/genetics , Genome, Viral , Phylogeny , Beauveria/pathogenicity , RNA, Double-Stranded , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics
15.
Appl Microbiol Biotechnol ; 105(19): 7395-7410, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34536105

ABSTRACT

In eukaryotes, myosin provides the necessary impetus for a series of physiological processes, including organelle movement, cytoplasmic flow, cell division, and mitosis. Previously, three members of myosin were identified in Magnaporthe oryzae, with class II and class V myosins playing important roles in intracellular transport, fungal growth, and pathogenicity. However, limited is known about the biological function of the class I myosin protein in the rice blast fungus. Here, we found that Momyo1 is highly expressed during conidiation and infection. Functional characterization of this gene via RNA interference (RNAi) revealed that Momyo1 is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The Momyo1 knockdown mutant is defective in formation of appressorium-like structures (ALS) at the hyphal tips. In addition, Momyo1 also displays defects on cell wall integrity, hyphal hydrophobicity, extracellular enzyme activities, endocytosis, and formation of the Spitzenkörper. Furthermore, Momyo1 was identified to physically interact with the MoShe4, a She4p/Dim1p orthologue potentially involved in endocytosis, polarization of the actin cytoskeleton. Overall, our findings provide a novel insight into the regulatory mechanism of Momyo1 that is involved in fungal growth, cell wall integrity, endocytosis, and virulence of M. oryzae. KEY POINTS: • Momyo1 is required for vegetative growth and pigmentation of M. oryzae. • Momyo1 is essential for cell wall integrity and endocytosis of M. oryzae. • Momyo1 is involved in hyphal surface hydrophobicity of M. oryzae.


Subject(s)
Ascomycota/pathogenicity , Endocytosis , Myosins , Ascomycota/growth & development , Myosins/genetics , Virulence
16.
Plant Cell ; 33(9): 3151-3175, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34181022

ABSTRACT

The actin cytoskeleton regulates an array of diverse cellular activities that support the establishment of plant-microbe interactions and plays a critical role in the execution of plant immunity. However, molecular and cellular mechanisms regulating the assembly and rearrangement of actin filaments (AFs) at plant-pathogen interaction sites remain largely elusive. Here, using live-cell imaging, we show that one of the earliest cellular responses in Arabidopsis thaliana upon powdery mildew attack is the formation of patch-like AF structures beneath fungal invasion sites. The AFs constituting actin patches undergo rapid turnover, which is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR regulatory complex (W/SRC). The focal accumulation of phosphatidylinositol-4,5-bisphosphate at fungal penetration sites appears to be a crucial upstream modulator of the W/SRC-ARP2/3 pathway-mediated actin patch formation. Knockout of W/SRC-ARP2/3 pathway subunits partially compromised penetration resistance with impaired endocytic recycling of the defense-associated t-SNARE protein PEN1 and its deposition into apoplastic papillae. Simultaneously knocking out ARP3 and knocking down the Class I formin (AtFH1) abolished actin patch formation, severely impaired the deposition of cell wall appositions, and promoted powdery mildew entry into host cells. Our results demonstrate that the ARP2/3 complex and formins, two actin-nucleating systems, act cooperatively and contribute to Arabidopsis penetration resistance to fungal invasion.


Subject(s)
Actin-Related Protein 2-3 Complex/genetics , Arabidopsis Proteins/genetics , Arabidopsis/immunology , Ascomycota/physiology , Formins/metabolism , Plant Diseases/immunology , Plant Immunity/genetics , Actin-Related Protein 2-3 Complex/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
17.
Arch Virol ; 166(6): 1801-1804, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33866414

ABSTRACT

Mycoviruses are widely distributed in fungi, but only a few mycoviruses have been reported in basal fungi to date. Here, we characterized a novel totivirus isolated from the basal fungus Conidiobolus heterosporus, and we designated this virus as "Conidiobolus heterosporus totivirus 1" (ChTV1). The complete genome of ChTV1 contains two discontinuous open reading frames (ORFs), ORF1 and ORF2, encoding a putative coat protein (CP) and a putative RNA-dependent RNA polymerase (RdRP), respectively. Phylogenetic analysis based on RdRP sequences showed that ChTV1 clustered with members of the genus Totivirus. The RdRP of ChTV1 has 51% sequence identity to that of Trichoderma koningiopsis totivirus 1 (TkTV1), which is the highest among mycoviruses. However, TkTV1 formed a distinct cluster with Wuhan insect virus 27, with 63% RdRP sequence identity, although Wuhan insect virus 27 has not been described, and its host represents a different kingdom. Therefore, we propose that ChTV1 is a new member of the genus Totivirus, family Totiviridae.


Subject(s)
Conidiobolus/virology , Phylogeny , RNA, Viral/genetics , Totivirus/genetics , Genome, Viral , Totivirus/isolation & purification
18.
Arch Virol ; 166(3): 977-981, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33427966

ABSTRACT

Here, we report a novel partitivirus infecting Metarhizium brunneum, which was designated "Metarhizium brunneum partitivirus 2" (MbPV2). The complete genome of MbPV2 consists of two segments, dsRNA1 and dsRNA2, with each dsRNA possessing a single open reading frame (ORF). dsRNA1 (1,775 bp) encodes a conserved RNA-dependent RNA polymerase (RdRp) with the highest sequence similarity to Plasmopara viticola associated partitivirus 1 (PvAPV1), while dsRNA2 (1,568 bp) encodes a coat protein (CP) with the highest sequence similarity to Colletotrichum partitivirus 1 (CtParV1). Phylogenetic analysis based on RdRp sequences showed that MbPV2 is a new member of the genus Gammapartitivirus, family Partitiviridae. This is the first report of a gammapartitivirus that infects the entomopathogenic fungus Metarhizium brunneum.


Subject(s)
Fungal Viruses/genetics , Genome, Viral/genetics , Metarhizium/virology , RNA Viruses/genetics , RNA, Viral/genetics , Amino Acid Sequence , Capsid Proteins/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Open Reading Frames/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA, Double-Stranded/genetics , RNA-Dependent RNA Polymerase/genetics , Sequence Alignment , Sequence Analysis, RNA
19.
Arch Virol ; 165(8): 1919-1923, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32504394

ABSTRACT

Mycoviruses are widely distributed in a variety of fungal species. However, few viruses have been reported in basal fungi. A novel non-segmented dsRNA virus was isolated from the basal fungus Conidiobolus sp. of the phylum Zoopagomycota, which has been named "Conidiobolus non-segmented RNA virus 1" (CNRV1). The complete genome sequence of CNRV1 was determined by dsRNA extraction, next-generation sequencing, and RACE. The genome of CNRV1 dsRNA is 3,092 bp in length and contains two open reading frames (ORFs) predicted to encode a subgenomic protein 1 (sgP1) and a putative RNA-dependent RNA polymerase (RdRp). Multiple sequence alignment and phylogenetic analysis based on RdRp sequences from selected dsRNA viruses showed that CNRV1 shared 31.9% sequence identity with Nigrospora oryzae unassigned RNA virus 1 (NoNRV1) and clustered with NoNRV1 and four other mycoviruses. These viruses are unassigned and distant from members of the family Partitiviridae, although they were previously considered partitivirus-like viruses. Thus, CNRV1 is a novel member of proposed genus "Unirnavirus", and is the first dsRNA sequence reported from a member of the phylum Zoopagomycota. This study extends our knowledge about mycoviruses in basal fungi.


Subject(s)
Conidiobolus/virology , Fungal Viruses/genetics , Fungi/virology , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Genome, Viral/genetics , Open Reading Frames/genetics , Phylogeny , Plant Diseases/virology , RNA-Dependent RNA Polymerase/genetics , Sequence Analysis, DNA/methods
20.
Mol Plant Pathol ; 21(5): 686-701, 2020 05.
Article in English | MEDLINE | ID: mdl-32105402

ABSTRACT

SsITL, a secretory protein of the necrotrophic phytopathogen Sclerotinia sclerotiorum, was previously reported to suppress host immunity at the early stages of infection. However, the molecular mechanism that SsITL uses to inhibit plant defence against S. sclerotiorum has not yet been elucidated. Here, we report that SsITL interacted with a chloroplast-localized calcium-sensing receptor, CAS, in chloroplasts. We found that CAS is a positive regulator of the salicylic acid signalling pathway in plant immunity to S. sclerotiorum and CAS-mediated resistance against S. sclerotiorum depends on Ca2+ signalling. Furthermore, we showed that SsITL could interfere with the plant salicylic acid (SA) signalling pathway and SsITL-expressing transgenic plants were more susceptible to S. sclerotiorum. However, truncated SsITLs (SsITL-NT1 or SsITL-CT1) that lost the ability to interact with CAS do not affect plant resistance to S. sclerotiorum. Taken together, our findings reveal that SsITL inhibits SA accumulation during the early stage of infection by interacting with CAS and then facilitating the infection by S. sclerotiorum.


Subject(s)
Chloroplasts/metabolism , Receptors, Calcium-Sensing/metabolism , Ascomycota/pathogenicity , Disease Resistance , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/genetics , Plant Immunity/genetics , Plant Immunity/physiology , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Salicylic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...